Losing Trick Count

John Williams February 28, 2017 Unit 503 Lecture Note: most of this material is from Ron Klinger's excellent book, *The Modern Losing Trick Count*

Using *Losing Trick Count* to figure your trick taking potential:

1. Count Your Losers.

2. Estimate Partner's Losers.

3. Add these together and deduct the total from 24.

The answer is the number of tricks your partnership will probably take, assuming:

- normal breaks and half your finesses working

- <u>at least an 8-card trump fit or a self-sufficient suit (important!)</u>

The answer for your trick potential is estimated to be at least 80 per cent effective. Don't expect the LTC to be accurate if trumps break 5-0 or if every finesse fails. (If you always wear a belt <u>and</u> suspenders, maybe LTC isn't for you.)

Step 1. Count your own losers: Each suit counts 3 losers at most:

3-card or longer suit Count a loser for missing the ace, king or queen.

0 loser suits: AKQ, AKQ4 and AKQ432 each have 0 losers.

1 loser suits: AQ3, AQ32 and AQ7432 each have 1 loser.

2 loser suits: A85, A8532, K43, K863, QJx, QTx, each have 2 losers.

2 1/2 loser suits: Q93, Q87532

3 loser suits: JT9 or worse.

2-card suit Count a loser for missing the ace or king.

0 loser suit: AK

1 loser suits: Ax, KQ, Kx, AQ (special case – count as only 1/2 a loser)

2 loser suits: QJ and all others with ace and king missing.

1-card suit count as 1 loser except for ace singleton which is no loser.

Void = 0 losers

Examples: How many losers does each of these hands have? 1. $AK532 \neq AJ73 \neq 986 \neq K$ has 1+2+3+1 = 7 losers

2. ▲ A73 ♥ J73 ♦ KQ86 ♣ KJT	has $2+3+1+2 = 8$ losers
3. ▲ QJ8432 ♥63 ♦ KQJ98 ♣ -	has $2+2+1+0 = 5$ losers
4. ♠ 8432 ♥ KJ3 ♦ KQJ9 ♣ 87	has $3+2+1+2 = 8$ losers

Points	Losers	Typical hand
13-15	7	Min. opening
16-18	6	Strong notrump
19-21	5- <u>4</u>	Jump shift
22-24	4	Forcing opening
7-9	9-8	Simple raise
10-12	8	Limit raise
10+	8-	Forcing response
12-18	7-6	Takeout double
8-16	8-6	Overcall
6-10	8-7	Weak jump overcall
11-14	7-6	Interm. jump overcall
16+	6- <u>5</u>	Reverse
6-8	8	Minimum Weak 2
8-10	7	Maximum Weak 2
6-9	9-10	1NT response
?	7-6(vul)	3 level pre-empt
?	6-5(vul)	4 level pre-empt
0-6	<u>10</u> -9	Preemptive raise
11+	7-	Splinter raise

The normal expectancy for minimum openings is 13-15 points and 7 losers. As strength increases, there are more tricks so fewer losers. 16-18 points with ordinary shape will usually have 6 losers. As strength decreases, there figure to be fewer tricks. With 10-12 points and no special shape, expect 8 losers.

There are 40 HCP in the deck and 13 tricks, so roughly 3 HCPs = 1 trick. So 13-15 points = 7 losers; 16-18 = 6 losers; and so on according to the following chart relating points, expected losers, and cover cards (cards that are likely to "cover" losers in partners long suited or 2-suited hands.)

Points	Losers	Cover cards
	expected	expected
0-6	10-11	0-1
7-9	9	2
10-12	8	3
13-15	7	4
16-18	6	5
19-21	5	6
22-24	4	7
25-27	3	8

Step 3. Add these together and deduct the total from 24.

Where does that figure of 24 come from? There are at most 3 losers in each suit, so there are at most 12 losers in your hand; the same is true for your partner's hand. That makes 24.

Why are there at most 3 losers in any suit? Consider:

▲K986 **♥**83 **♦**KJ84 **♣**J42

Suppose you are in a spade contract (remember LTC applies only with a trump fit.) Then the 4th \bigstar is good with the probable 3-2 split, and the 4th \bigstar is not a loser if partner has 4 or more or if partner has fewer than 4 and can ruff it.

Some examples:

you				partner	
▲ A9852	2	1♠	2♠	▲ JT4	3
♥ J2	2	4♠		▼ AT863	2
♦ 4	1			♦ 8653	3
🛧 AKQJ9	0			♣ 2	1
	5				9

1. (from a club Swiss game)

24 - (5+9) = 10 Bid game.

{only 25% of EW pairs were in 4♠ }

2. (from a club Swiss game)

West				East	
 ▲ AQ87 ♥ A75 ♦ KJT3 ♣ 76 	1 2 2 2	1♦ 2♠	1 ≜ Pass	 ★ KJ65 ♥ K84 ♦ 984 ★ A94 	2 2 3 <u>2</u>
	7				9
24 – (7+9) invites, wi {many pai	ll Eas	st acce	pt with 1	A	West

3. A 24 point cold slam.

you				partner	
▲ K86532	2		1♦	▲ AQ74	1
♥ 4	1	1♠	4♠	∀ J8	2
◆ 72	2	?		♦ AK943	1
♣ A943	2			◆ K5	1
	7				5

you have 7 losers

partner has ~19 points, or 5 losers

7 + 5 = 12

24 - 12 = 12 tricks are probable. Explore with

4NT since partner opened diamonds.

Note: The lecture will contain many more examples of using LTC to determine when to bid games, stop in part scores, or explore for slam, as well as a discussion of further topics: adjustments to LTC, cover cards, and controls. <u>http://members.shaw.ca/conventions/ltc.pdf</u> has an excellent (39 page) condensation of Klinger's book.