Losing Trick Count

John Williams February 28, 2017 Unit 503 Lecture
Note: most of this material is from Ron Klinger's excellent book, The Modern Losing Trick Count

Using Losing Trick Count to figure your trick taking potential:

1. Count Your Losers.
2. Estimate Partner's Losers.
3. Add these together and deduct the total from 24.

The answer is the number of tricks your partnership will probably take, assuming:

- normal breaks and half your finesses working
- at least an 8-card trump fit or a self-sufficient suit (important!)

The answer for your trick potential is estimated to be at least 80 per cent effective. Don't expect the LTC to be accurate if trumps break 5-0 or if every finesse fails. (If you always wear a belt and suspenders, maybe LTC isn't for you.)

Step 1. Count your own losers: Each suit counts 3 losers at most:
3-card or longer suit Count a loser for missing the ace, king or queen. 0 loser suits: AKQ, AKQ4 and AKQ432 each have 0 losers.
1 loser suits: AQ3, AQ32 and AQ7432 each have 1 loser.
2 loser suits: A85, A8532, K43, K863, QJx, QTx, each have 2 losers.
2 1/2 loser suits: Q93, Q87532
3 loser suits: JT9 or worse.
2-card suit Count a loser for missing the ace or king.
0 loser suit: AK
1 loser suits: Ax, KQ, Kx, AQ (special case - count as only $1 / 2$ a loser)
2 loser suits: QJ and all others with ace and king missing.
1-card suit count as 1 loser except for ace singleton which is no loser.
Void $=0$ losers
Examples:
How many losers does each of these hands have?

1. AK532 \uparrow AJ73 $986 * \mathrm{~K}$ has $1+2+3+1=7$ losers
2. A 73 J 73 -KQ86 $\& \mathrm{KJT}$ has $2+3+1+2=8$ losers
3. Q Q $8432 \vee 63 \uparrow$ KQJ98 - has $2+2+1+0=5$ losers
4. 8432 YKJ3 \uparrow KQJ9 87 has $3+2+1+2=8$ losers

Step 2. Estimate partner’s losers:

Points	Losers	Typical hand
$13-15$	7	Min. opening
$16-18$	6	Strong notrump
$19-21$	$5-4$	Jump shift
$22-24$	4	Forcing opening
$7-9$	$9-8$	Simple raise
$10-12$	8	Limit raise
$10+$	$8-$	Forcing response
$12-18$	$7-6$	Takeout double
$8-16$	$8-6$	Overcall
$6-10$	$8-7$	Weak jump overcall
$11-14$	$7-6$	Interm. jump overcall
$16+$	$6-5$	Reverse
$6-8$	8	Minimum Weak 2
$8-10$	7	Maximum Weak 2
$6-9$	$9-10$	1NT response
$?$	$7-6(\mathrm{vul})$	3 level pre-empt
$?$	$6-5(\mathrm{vul})$	4 level pre-empt
$0-6$	$\underline{10-9}$	Preemptive raise
$11+$	$7-$	Splinter raise

The normal expectancy for minimum openings is 13-15 points and 7 losers. As strength increases, there are more tricks so fewer losers. 16-18 points with ordinary shape will usually have 6 losers. As strength decreases, there figure to be fewer tricks. With 10-12 points and no special shape, expect 8 losers.

There are 40 HCP in the deck and 13 tricks, so roughly 3 HCPs = 1 trick. So 13-15 points = 7 losers; 16-18 = 6 losers; and so on according to the following chart relating points, expected losers, and cover cards (cards that are likely to "cover" losers in partners long suited or 2-suited hands.)

Points	Losers expected	Cover cards expected
$0-6$	$10-11$	$0-1$
$7-9$	9	2
$10-12$	8	3
$13-15$	7	4
$16-18$	6	5
$19-21$	5	6
$22-24$	4	7
$25-27$	3	8

Step 3. Add these together and deduct the total from 24.

Where does that figure of 24 come from? There are at most 3 losers in each suit, so there are at most 12 losers in your hand; the same is true for your partner's hand. That makes 24.
Why are there at most 3 losers in any suit? Consider:
^K986 83 *KJ84 \& J42
Suppose you are in a spade contract (remember LTC applies only with a trump fit.) Then the 4th is good with the probable 3-2 split, and the 4th is not a loser if partner has 4 or more or if partner has fewer than 4 and can ruff it.

Some examples:

1. (from a club Swiss game)

you				partner		
- A9852	2	19	24	a JT4		
- J2	2	49		- AT863	2	2
- 4	1			- 8653	3	3
- AKQJ9	0			-2		1
	5					9

$24-(5+9)=10$ Bid game.
\{only 25% of EW pairs were in 4a \}

2. (from a club Swiss game)

West				East	
$$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & \frac{2}{7} \end{aligned}$	$\begin{aligned} & 1 \star \\ & 2 \star \end{aligned}$	$\begin{array}{r} 11 \\ \text { Pass } \end{array}$		$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & \frac{2}{9} \\ & \hline 9 \end{aligned}$

$24-(7+9)=8 \quad$ 2a is high enough. If West invites, will East accept with 11 points? \{many pairs floundered in 3 or 4 spades \}
3. A 24 point cold slam.

you				partner	
a K86532	2		1*	- AQ74	1
$\checkmark 4$	1	14.	$4{ }^{1}$	\bullet J8	2
- 72	2	?		- AK943	1
- 4943	2			- K5	1
	7				5
you have 7 losers partner has ~ 19 points, or 5 losers $7+5=12$ $24-12=12$ tricks are probable. Explore with 4NT since partner opened diamonds.					

Note: The lecture will contain many more examples of using LTC to determine when to bid games, stop in part scores, or explore for slam, as well as a discussion of further topics: adjustments to LTC, cover cards, and controls. http://members.shaw.ca/conventions/ltc.pdf has an excellent (39 page) condensation of Klinger’s book.

